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Structure, phase transitions and dynamics of interfaces 
and surfacesf 

D B Abraham$ 
Department of Mathematics, University of Arizona, Tucson, AZ 85712, USA 

Received 23 November 1987 

Abstract. The structure of the interface between coexistent phases in the planar Ising model 
is reviewed and some new results are given for interfaces not in principal directions. The 
Wulff construction is investigated in this respect. A brief review of exactly solvable models 
of phase transitions in surfaces is given. The paper concludes with new results for the 
dynamics of interfaces. 

1. Statics 

1 . 1 .  Introduction-Ising model 

Consider a.cubic lattice with integer-valued coordinates. At each vertex i E Z d  there 
is a spin a( i)  = i l  and  the state of the system is described by all such values for a 
given lattice A, denoted {a('i)}. The energy and  canonical ensemble probability of 
such a configuration are given by 

(8.1) 

where ( i ,  j )  signifies a sum over nearest-neighbour pairs and  

where P = 1/ kT introduces the temperature T and 2, is a normaliser. Regarding the 
spins as magnetic, H is a field and J is an  exchange coupling. The model may also 
be thought of in other contexts. 

( a )  Lattice gas. a( i )  = + 1 ( -  1) corresponds to particle present (absent) in cell i. 
The intermolecular interaction is infinitely repulsive for two particles in the same cell 
( a  configuration not allowed in the Ising model), attractive with value 4 J  for nearest 
neighbours and  zero otherwise. The fugacity is exp(2PJ + n k ) ,  where n is the number 
of nearest neighbours. 

( b )  Binary mixtures and alloys. a( i) = 1 ( -  1) means cell i contains species a (species 
b) .  The coupling J > 0 favours like neighbouring pairs over unlike ones and the field 
acts as a differential fugacity. 

t Presented at the conference on Mathematical Problems in Staristical Mechanics held at Heriot-Watt 
University on 3-5 August 1987. 
$ On leave from Department of Theoretical Chemistry, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG. UK.  
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1742 D B Abraham 

Most of the remarks which follow will concern the planar Ising model which has 
a rich behaviour which is understood in some detail, mainly because of the interplay 
of general mathematical results (Lebowitz 1977, Miracle-Sole 1976, Ruelle 1968, 
Abraham 1987) with exact calculations which go back to the fundamental work of 
Onsager (1944). An increasing number of applications are emerging in surface science: 
for instance, the phase diagrams of CH4 sub-monolayer on graphite (Kim and Chan 
1974), the surface reconstruction of (110) facets on Au (a ( 2 x  l ) +  (1 x 1) transition) 
(Campuzano et a1 1985), roughening of Au on (110) W (Kolaczkiewicz and Bauer 
1985), to cite but three. 

1.2. Phase diagram of Zsing model 

The mean magnetisation is defined by 

1 
m(h,  T ) =  lim - (a(i)) 

‘-cr In1 I€.\  

(1.3) 

where ( ) is the expectation with respect to (1.2). The main features of the diagram are 
(i) the obvious symmetry m ( h ,  T )  = - m ( - h ,  T ) ,  
(i i)  concavity in h for h 3 0 (Griffiths et a1 1970), 
(iii) existence of non-zero spontaneous magnetisation for T < Tc(2), the critical 

temperature (Martin-Lof 1972, Lebowitz and Martin-Lof 1972) and its exact calculation 
(Onsager 1949, Yang 1952). 

The equation of state cannot be calculated exactly for h # 0 (except for the critical 
indices y, y‘  and S), but the behaviour far enough from the critical point can be 
obtained from rigorous perturbation theory (to all orders) (Ruelle 1968). 

1.3. Interface structure 

To study the spatial relationship between pure phases at coexistence (this means the 
bulk field H = 0, T < Tc(2)), a small magnetic field h(  i )  = h sgn i2 can be applied. This 
is equivalent to specifying boundary conditions 

{ a ( i ) = + l  (-1) if iEa .4 ,  i , 31  ( i 2 s O ) }  

and having h ( i )  = 0 in the bulk (see figure 1). This result is proved by correlation 
inequalities (Abraham and Issigoni 1980) and makes further calculations, which are 

Figure 1. A spin configuration with symmetry breaking boundary conditions. There is a 
‘long contour’ A indicated by a bold line connecting the points of spin flip on the boundary. 
The regions abnve and below A have their magnetisation altered fron * 1  by the small 
closed loops shown. 



Structure of interfaces and surfaces 1743 

now technically possible, have a precise meaning. For instance, the surface tension is 
defined by 

(1.4) 

in terms of partition functions 2 ' ;  Z" has all boundary spins +. Since we are at 
coexistence, the bulk and  wall contributions are ex-pected to cancel out in (1.4), leaving 
the interface term. This is indeed the case, giving 

'T= Iim ( 1 / 2 N )  lim I o g ( Z + + / Z + + )  
N - x M - X  

' T = ~ ( K  - K * )  (1 .5 )  

with sinh 2K sinh 2 K *  = 1. 
According to historically accepted ideas due to van der Waals, the magnetisation 

m ( x ,  y )  should vary with y ,  but not x, in the thermodynamic limit for laboratory = fixed 
axes, as defined by the containing vessel in figure 2 .  Instead, we find (Abraham and 
Reed 1974) 

lim lim ( a ( x ,  y ) ) = O .  (1.6) 
N - 2  \ f - z  

Evidently, the interface is somewhere else. It turns out that, to recapture it, we have 
to scale y with the width of the system. The general result is then expressed by 
theorem 1 (Abraham and Reed 1976). 

Figure 2. The labelling of axes and interactions for the symmetry breaking boundary 
conditions used to establish the interfacial profile. 

Theoreml .  F o r a l 1 0 ~ T < T c ( 2 ) , a ~ R , / 3 ~ ( - 1 , 1 )  wehave  

s< ;  

where 

L @(XI = - J exp( - U ' )  d u  
G o  

and 

b( T )  = (sinh 7)' *, 
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1.4. Remarks 

(i) Let us draw lines separating antiparallel neighbouring spin pairs, as in figure 3. 
There will be a long contour yo connecting ( -N ,  f )  to ( N ,  4). Gallavotti (1972) proved 
that, for T<< Tc(2), the minimum distance from yo to any point (x, y )  denoted 
6 (  y o ,  (x, y ) )  satisfies 

Iim Iim ~ ( d ( y , , ( x , y ) ) < ~ ' } = ~  (1.10) 
N-.a M - x  

for any 6 < 4. This is consistent with theorem 1 at an intuitive level. 
(ii) For an arbitrary product of spins in some '2 sufficiently large, Aizenman (1979, 

1980) and Higuchi (1979) proved that a translationally variant correlation function 
cannot be induced in the thermodynamic limit no matter how spins are fixed on the 
boundary. 

(iii) These results can be generalised to interfaces whose mean direction is any 
angle 8 E (-7~12, 7 ~ 1 2 )  by moving the right-hand side of A in figure 4 so that yo ends 
at ( N ,  [ 2 N  tan e]). Then the surface tension is (Abraham and Reed 1977) 

T(e)=Icos Oly(w(e))-isin e w ( e )  (1.11) 

i tan 0 = a y l a w  (1.12) 

where w = w (  e )  solves 

(with Re w = 0 to fix the branch). The Onsager function is defined by 

cosh y ( w )  =cosh 2 K 7  cosh2K2-sinh2KT sinh2K2cosw (1.13) 

with y ( w ) Z O  for  ER. For typical polar plots of 7(e), see the review article by 
Rotmann and Wortis (1984). The analogous magnetisation theorem is for the function 

lim lim ( a ( p N , ( l + p ) ~ t a n  e + d S ) )  
N - X  M - X  

which satisfies the same results for 6 <$ and 6 > $.  For 6 = f ,  the scaling factor b(  T )  
acquires 6 dependence, being replaced by 

b(e ,  T )  = [ ~ ~ ( ~ ( o ) ) ] - ' / ~  (1.14) 
(recall (1.11) and (1.12)). 

+ + + + +  
+ - - -  +?Lp + - + - + + - - +  

+ + + + - + + + +  

+ + +  

Figure 3. Spin configurations and contours. A unit edge on the dual lattice A *  separates 
any part of antiparallel spins: 0 , 2  or 4 lines may meet at interior points of ,I*. The contours 
are edge self-avoiding. Where they cross, they can be deformed as shown into self-avoiding 
loops. To avoid double-counting, the other non-crossing decomposition is suppressed. 
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Figure 4. Angle-dependent interfacial free energy. The point of spin reversal is sheared 
on the right-hand edge. The long contour is shown schematically. 

The width of the interface thus satisfies 

lim N - ’  w( e, T )  = ( T (  e)  + T I (  e))’’’ (1.15) 

a formula conjectured for the Ising model by Akutsu and Akutsu (1986) and proved 
by them for SOS models, and in greater generality by De Coninck and Ruiz (1988). 
This has interesting properties as T+O+ on [0, 7 / 2 1 :  

Iim lim N - ” ~  w( e, T ) -  = sin e cos o(sin e + cos e).  r-o N-x (1.16) 

Thus only at 0 = 0, 7 1 2 ,  the scaled width vanishes: we have a facet, as the Wulff 
construction suggests, but not at intermediate angles. 

1.5. The Wulff construction 

According to thermodynamical arguments (for a review, see Rottman and Wortis 
(1984)), the equilibrium mean shape of the crystal surface is given by minimising the 
line integral for the free energy 

(1.17) 

with the fixed boundary conditions, and here no area constraint. For differentiable 
solutions, e( 1 )  = 0 everywhere on the interface line, which is thus straight. As pointed 
out by Ball, if we allow discontinuous solutions, any non-decreasing function f from 
Z n [ - N ,  N ]  to Z n [0, [ 2 N  tan e]] wi th f ( -N)  = O , f ( N )  = [ 2 N  tan e] is a minimiser. 

The T +  0 limit shows that not all these solutions are significant, which is a rather 
curious fact. One way of viewing theorem 1 is that we derive both the conclusions of 
the Wulff construction (albeit a rather trivial example) for T > 0 and the fluctuations 
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about the mean structure, which are normally tacked on later in an  ad hoc and not 
entirely convincing fashion. 

1.6. The wetting transition 

Consider the arrangement shown in figure 5 .  With + spins on the top and  the bottom 
we expect a + phase; the effect of the perturbed bonds will be to give a magnetisation 
which decays from +1 to +m* on the scale of the bulk correlation length (Abraham 
1980). But if we reverse all spins on the lower face, there will be a domain wall. If 
0 < a < 1, then the minimum energy will be attained with the domain wall intersecting 
the modified bonds. But the entropy of wandering will be lost. This competition 
produces a phase transition of second order (Abraham 1980) at a temperature T, (a )  < 
T J 2 )  for O <  a < 1, in which the low-temperature phase has the domain wall bound 
(see figures 6 and 7 ) .  This squeezes out the - phase, which may be said to wet partially 

I c + i 
+ 

15.11 - 

1 

+ h  

+ h  

- h  

- h  

- h  

- h  

c h  

/ + \  J2 ' + + 
' 1  

4 
Figure 5. A planar lsing model with modified surface bonds and a domain wall, or long 
contour beginning and ending in the surface. This is equivalent to the external field 
arrangement shown in the second drawing with h = J o .  The reader should compare the 
Boltzmann factors for the last two drawings for general s. 

I 

r _ '  - 

0 0.5 1 

a 
Figure 6. The phase diagram for the system depicted in figure 5 .  The thermodynamic limit 
has been taken, followed by s -P CC. Between the curve and the axes, the domain wall is 
bound to the surface; outside, it fluctuates 'out of sight'. These two regions correspond to 
the partially wet and wet cases, respectively. 
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' t  

Figure 7. Sketches of magnetisation profile near a wall The curbes are  labelled by the 
corresponding points on the line in figure 6 In  curve 2, a new length 6 appears scaling 
the switch from -m*  to +m" C u n e  3 is typical of the situation T c ( 2 ) >  T >  T,Ia)  m(w) 
tends to -mi from below as  X + ~ C  

the bottom surface. For Tc(2)  > T >  T w ( a ) ,  a macroscopic film of - phase intercalates 
between the wall and the + phase. 

The phase diagram and magnetisation as a function of y are shown in figures 6 
and 7. Clearly a new length scale [ ' ( a ,  T )  emerges. As T +  T,,(a)-, 

(1.18) 

1.7. Remarks 

( i )  This phase transition may also be studied by random walk models (Fisher 1984, 
Abraham and De Coninck 1983) which show that the droplets of mainly - spins at 
the wall are microscopic in size. Thus the picture advocated by Cahn (1977) in his 
important work on wetting does not hold. There the thermodynamic stability of a 
sessile drop with a contact angle e,( Q, T )  is discussed. In the case discussed here, the 
contact angle makes no sense for microscopic droplets. But De Coninck and Dunlop 
(1987) have made sense of this picture for the random walk model by introducing a 
constant area constraint which forces one drop to be macroscopic. The contact angle 
so defined satisfied the modified Young equation: 

cos 8 r,( e) -sin e ar,/ae = r-, - r,, . (1.19) 

(The modification is the introduction of the derivative term which is appropriate 
for an underlying lattice.) The least T for which Oc = 0 may also be considered as a 
thermodynamic definition of Tw(a) .  This was investigated in Cahn (1977). Recently, 
(1.19) has been used to obtain contact angles for the planar king model, and its 
derivation from first principles of statistical mechanics is under way, using a 'fixed 
area' constraint (Abraham er a1 1987). It  is possible that a sessile drop without the 
fixed area (volume in 3 ~ )  is metastable. 

(i i)  Binding and wetting of domain walls to other domain walls. The terrace-ledge- 
kink (TLK) model of a crystal surface is illustrated and explained in figure 8. Because 
the kinks expose more area (or reduce bonding), they are disfavoured. Under appropri- 
ate circumstances, the ledges either repel or attract (this may depend in a very sensitive 
way on surface impurities, such as adsorbed gases). It turns out that Lieb's ice-rule 
Bethe ansatz technique (the six-vertex problem) can be used on a suitably adapted 
model. For attractive ledges, there is a drastic surface reconstruction (Abraham 1983) 



1748 D B Abraham 

( d l  

Figure 8. The terrace-ledge-kink ( T L K )  model. ( a )  shows a ledge separating two terraces 
having a height difference of units in atomic sizes. ( b )  shows kinks formed on the ledge. 
The pit on the left-hand terrace and erratic adatom on the right-hand side are not allowed 
in the model (they are energetically unfavourable). ( c )  shows an overhang on a ledge; 
this is not allowed. ~ d )  shows a group of three ledges forming part of a vicinal section. 
The ledges cannot cross, but they can touch. 

where the vicinal section (cheese wedge) develops macroscopic facets perpendicular 
to the basal plane. On the other hand, if the ledges repel when the angle of the section 
is such that there is a unique ground state, there is a low-temperature state with a facet 
at that angle. This facet breaks up at a roughening transition which is of F type, and 
thus of infinite order. For other angles, there is no phase transition and no facet. 

The topics in 0 1 which are not new are reviewed in greater depth in Abraham (1987). 

2. Dynamics 

We now return to the structure of the interface with which § 1 began and discuss the 
dynamical stability of the +- domain wall. The Ising model itself has no dynamics 
but we can introduce the dynamical effect of the underlying heat bath in the following 
way: on a sufficiently large length scale much greater than the bulk correlation length, 
the Ising model interface becomes a string with essentially no overhang in the direction 
normal to the mean interface, which we regard as a straight line from ( - L ,  0) to ( L ,  0). 
For each integral n in [-L,  L ]  we give the displacement h ( n )  of the string from the 
mean interface. The free energy functional for a given configuration may be taken as 

L 

F [ { h ( n ) } ]  = 2 L T +  K ( h ( n )  - h ( n  - 1))’ 
- L + I  

with h ( - L ) =  h ( L )  = O .  Equation (2.1) is only valid physically in the coarse-grained 
sense, but we shall nevertheless take h( n )  E R. The Onsager-Machlup, or Langevin, 
dynamics which are clearly explained by Kac and Logan (1979) may be introduced: 

ahlat = -rvF+ 1 7 ( t )  

= -KTAh + q( t )  
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where 

2 -1 
-1 2 -1 

2 -1 

A = [  ,I . * .  -1  -1 1 
and v ( t )  is Gaussian white noise for which 

First we reduce the problem by normal mode analysis of A :  let 

A = SAST (2.Sa) 

where S is a (real) orthogonal matrix and  let 

6=STh i j  = S’t). (2.Sb) 

Then 

a & / a t  = -TKA,6,+ i j ,  (2.6) 

where A, is an  eigenvalue of A. The transformation does not alter the properties of 
the noise, so the problem may be restated stochastically in terms of the conditional 
probability P{6,( t )  1 6,(0)}, which we denote P for convenience: 

the solution of which is the Ornstein-Uhlenbeck process: 

P { i q ( t )  1 f i , (o))  
A, [ f i , ( t )  - fi,(o) e x p ( - r ~ ~ , t ) l ’  

1 -exp(-ZTK~, t )  
A, )“‘exp( -- 2 =(  2n[1 -exp(-2TKAqt)] 

(2.8) 

Notice that, as t + m ,  P +  [(Aq/2n)]’ * exp(-iAqhi(co)), the initial condition is forgot- 
ten and the limiting Gaussian distribution leads back to theorem 1, through 

which is obtained by using characteristic functions and Gaussian integration, with 

1 1 -exp(-4rKt{ l  - c o s [ ( 2 k - l ) ~ / 2 L ] ) )  
a’( t )=-X 

2L 1 1 -cos[(2j- l ) n / 2 L ]  
(2.10) 

where the explicit form of S and A, in (2.5a, b )  has been used. The solution separates 
into several regimes. 

( a )  If Tr<< 1, with L finite, we get a diffusive regime 

(h,( t)’) - t. (2.11) 
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( b )  If L + a, the sum becomes a Riemann integral, giving 

1 
u2( t )  = - 1; d 4  

1 - exp[ -2TKr( 1 -cos 4)]  
4fi 1 -cos 4 

(2.12) 

which behaves like JI‘t for T t  >> 1, unlike the diffusive case. 

s-lim a’( t ) / L  = F ( z )  where 
(c) The scaling limit, denoted s-lim with t -+ a, L-+ a, such that z = rt/12 is fixed, 

(2.13) 

For t >> L‘, z is large and  the limit is approached ultimately exponentially: 

(2.14) 
1 2  
2 7 r  

F ( Z )  - exp(-z7iz). 

As t decreases, more timescales become relevant (or unsaturated). To recapture the 
small-z result ( t  << L’) 

F (  Z )  a z112 (2.15) 

we have to bring in an  infinite sequence of timescales: 

t, = L’/ . i r2(2j  - 1 ) T K  (2.16) 

through the Poisson summation formula. 
To sum up, the main points are that the initially flat interface is unstable to 

macroscopic fluctuations, but the time is scaled typically by L2 and an  infinite number 
of timescales are involved as L -+ 00. 
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